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Abstract

This paper proposes a minimum viable reporting template for natural parametric
insurance. The framework is motivated by prevailing industry practice: under intensi-
fying climate volatility, rapidly evolving exposures, and binding solvency constraints,
natural catastrophe (NatCat) teams increasingly re-purpose the hazard–exposure–
vulnerability–finance (HEVF) stack to engineer index-linked liabilities that are ver-
ifiable, bounded, and more capital-tractable. We refer to this supply-side design class
as Natural Parametric (NatPar) modelling.

NatPar retains the NatCat architecture but alters what becomes contractual. Haz-
ard modelling specifies observable indices and trigger logic; exposure and vulnerability
are re-tasked into a basis-risk engine that quantifies mismatch between indemnity loss
and parametric payout; and the finance block is adapted to short-tailed liabilities
with limited development risk. Because NatPar is constructed from the NatCat stack,
standard portfolio outputs carry over directly—including annual average loss (AAL),
EP/AEP/OEP curves, return-period levels, and one-year tail metrics—enabling like-
for-like comparison between indemnity and parametric programmes on a common haz-
ard and exposure base.

We then introduce a minimal reporting and regulatory standard that complements
these familiar tail objects with basis-risk governance diagnostics: average basis short-
fall and overpayment, parametric–indemnity dependence (e.g., correlation), two-sided
basis-exceedance probability curves (BEP±), and portfolio-level basis AEP and OEP
(BAEP/BOEP) that separate shortfall from overpayment. Collectively, these outputs
support an “apples-to-apples” evaluation of NatCat and NatPar designs by making
explicit how payout shape and basis risk propagate into risk and capital outcomes.

A frost laboratory illustrates the framework. Starting from a NatCat model of
seasonal frost damage, we construct AAL-neutral parametric payoffs and show that
payout shape is a first-order determinant of tail capital: bounded continuous schedules
can reduce tail VaR by limiting exposure-driven amplification, whereas trigger-based
event parametrisations can concentrate losses and increase VaR at regulatory confi-
dence levels.
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1 Introduction

Over the last decade, climate pressure alongside rapid economic growth has increased both
exposure and hazard intensity across many regions. In several markets, climate-exposed
lines have moved toward outcomes increasingly described—informally or explicitly—as
uninsurable: coverage is withdrawn, terms are tightened, or prices rise to levels that are
politically and socially untenable. At the same time, protection gaps for climate perils
remain large and, in some settings, continue to widen.

From the perspective of insurers and reinsurers, the binding challenge is often not only
higher mean losses, but reduced tractability of the loss distribution, especially in the tail.
Hazard distributions drift, exposures evolve quickly, and extremes may cluster in space
and time; these dynamics inflate uncertainty precisely where solvency frameworks and risk
appetite concentrate. Long-tailed indemnity liabilities become harder to reserve, harder
to explain, and harder to support under one-year capital constraints and target returns.
In this sense, a line drifts toward uninsurability when markets cease to clear because one
or more constraints becomes binding: affordability (premiums exceed willingness or ability
to pay), capital (tail requirements render the line uneconomic), and/or model uncertainty
(pricing and reserving assumptions are no longer defensible to management, regulators,
or capacity providers). These constraints reinforce each other: uncertainty in exposure
and vulnerability increases capital charges and risk loadings, pushing premiums higher and
accelerating capacity withdrawal.

Against this background, parametric structures have expanded not merely as customer-
facing innovations, but as a supply-side reconfiguration of NatCat practice. Under climate-
driven uninsurability and capital pressure, NatCat teams increasingly redeploy the hazard–
exposure–vulnerability–finance stack to produce index-linked liabilities that are auditable,
bounded by contract, and more capital-tractable. We refer to this pipeline as Natural
Parametric (NatPar) modelling. Conceptually, NatPar preserves the NatCat architecture
but changes what becomes contractual: hazard modelling defines measurable indices and
triggers; exposure and vulnerability are re-tasked into a basis-risk engine that quantifies the
mismatch between realised indemnity loss and parametric payout; and the finance block
is adapted to short-tailed liabilities with minimal development risk. NatPar therefore ex-
changes a portion of exposure-driven indemnity variability for a transparent, index-verified
payout, reducing reserve uncertainty and improving capital tractability at the cost of ex-
plicit basis risk.

Design-first versus pipeline-first. It is useful to contrast our objective—to set stan-
dards for NatPar reporting and regulation— contrasting the dominant framing in much of
the academic literature and industrial development.

• Academic view: design-first. A large literature treats parametric insurance as a
contract-design problem: specify an index (or index vector) X and choose a payout
function I(X) to optimise a welfare or risk objective under a premium constraint.
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This perspective is mathematically flexible and emphasises basis risk as the mismatch
between realised loss and index-based payout, making it well suited for studying
optimality, robustness, behavioural frictions, and uptake.

• Industry view: pipeline-first. In practice, however, many parametric products are
developed inside the NatCat ecosystem. Underwriting, reinsurance/ILS structuring,
accumulation control, and solvency reporting rely on a modular workflow (hazard,
exposure, vulnerability, financial terms) and a standard set of portfolio outputs (AAL
and EP/AEP/OEP curves, return-period levels, and one-year tail metrics). From
this viewpoint, a parametric contract is not an arbitrary I(X): it must be verifiable,
auditable, and comparable within the same reporting language used for indemnity
portfolios and capital.

This creates a practical gap between design-first theory and pipeline-first implementation—
a gap that becomes acute when products must be justified to boards, supervisors, and
capacity providers.

This paper introduces a framework based on three pilars.

1. NatPar standard within the NatCat stack. We formalise a NatPar standard
in which parametric contracts are constructed and evaluated within the conventional
catastrophe-modelling architecture—hazard, exposure, vulnerability, and financial
terms—so that outputs remain directly comparable to NatCat portfolio outputs. We
express NatPar design objectives using the portfolio language used in practice—
AAL, EP/AEP/OEP curves, and one-year tail metrics—and introduce AAL-neutral
calibration to isolate distribution-shape effects across contracts.

2. Basis risk as a distributional object. We treat basis risk not as a single summary
statistic but as a distributional object, introducing two-sided basis-risk exceedance
curves (“basis EP”) for shortfall and overpayment as governance diagnostics that sit
naturally alongside standard EP reporting and provide a tail-sensitive view of mis-
match. We create such basis tail analysis under a so-called AAL-neutrality calibration
to make sure the shortfall/overpay is not due to changes in the average loss.

3. NatPar vs NatCat capital. We show that contracts with the same mean loss
can have materially different tails depending on payout shape; hence AAL-neutrality
does not imply capital-neutrality under VaR-style solvency measures.

We consolidate numerical illustrations into a single case-study section and apply a consis-
tent reporting template throughout.

The remainder of the paper is organised as follows. Section 2 reviews the contract-design
and multi-hazard index-insurance literatures and contrasts them with the pipeline and re-
porting language used in catastrophe practice. Section 3 summarises the NatCat hazard–
exposure–vulnerability–finance stack and the standard portfolio outputs used for under-
writing and capital (AAL, EP/AEP/OEP curves, return-period levels, and one-year tail
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metrics). Section 4 then formalises the NatPar mapping—how triggers and payout sched-
ules are constructed to remain NatCat-compatible—and introduces the minimal reporting
template that pairs tail objects with auditable basis-risk diagnostics (point measures and
two-sided basis exceedance curves, at individual and portfolio level). Sections 5, 6 and 7
implement the framework in a stylised frost laboratory: Section 5 develops the analytic
representations used for comparability and basis diagnosis, Section 6 reports the empirical
outputs for both individual risks and a two-region portfolio (including BAEP/BOEP), and
Section 7 interprets the results with an emphasis on how payout shape propagates into tails
and solvency-relevant capital. Section 8 discusses extensions (multi-trigger and multi-peril
programmes), regulatory implications, and practical limitations, and Section 9 concludes
with a summary of lessons for NatPar reporting and governance.

2 Literature review

Much of the academic literature treats parametric insurance as a generic contract-design
problem, whereas the industry has largely evolved parametric programmes as pipeline-
compatible overlays on NatCat machinery.

A standard academic entry point models insurance design as a choice of a payout sched-
ule subject to pricing constraints, often derived from expected-utility considerations and
classic optimal insurance results (e.g., generalized deductibles) [1, 2]. Index (parametric)
insurance adopts a related contract-design perspective, but replaces loss adjustment by a
payout determined by an observable index (or index vector) X, typically written as I(X).
Modern treatments formalize the choice of I(·) under premium constraints and study wel-
fare, risk, and implementability of index contracts [3].

Across this literature, basis risk—the mismatch between realized indemnity-style loss
and the index-based payout—is consistently identified as the central friction that can dom-
inate performance and suppress demand. Two influential directions are (i) multi-scale
indices to reduce mismatch across spatial/temporal aggregation and (ii) empirical mea-
surement of index quality and basis-risk outcomes in the field [4, 5]. Complementary work
emphasises implementation and uptake constraints, including regulatory challenges and
behavioural frictions such as complexity aversion, which can reduce uptake even when
expected values are favorable [6, 7].

A conceptually close strand to our motivation is the review by Benso et al. [8] on
weather index insurance for multi-hazard resilience and food security. Beyond synthesizing
the literature, they propose a practical three-module framework for index insurance design:
hazard identification, vulnerability assessment, and financial methods and risk pricing. This
decomposition is a useful bridge between a broad (and sometimes fragmented) academic
literature and the practical steps required to build indices and payout rules.

A key message in the multi-hazard setting is that hazard representation and combina-
tion are modelling choices, not merely data choices. Benso et al. [8] emphasise that multi-
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hazard products should not default to independence assumptions and highlight interaction
taxonomies (independent, synergistic, cascading) that can materially affect loss modelling
and premium adequacy [8, 9]. Related work reviews quantitative methodologies for multi-
hazard interrelationships and provides a structured view of how hazard interactions can be
represented and tested [10]. In climate-risk contexts, compound-event research provides
additional conceptual and statistical tools for thinking about multivariate extremes and
interacting drivers [11].

In industry practice, catastrophe risk is commonly represented via a modular supply
chain: hazard (event sets/footprints), exposure (assets at risk and where), vulnerability
(damage/loss functions), and financial terms (deductibles, limits, aggregates and layers).
This architecture is central to how portfolios are priced (e.g., AAL) and how tails are
communicated (e.g., EP/AEP/OEP curves and return-period losses), and it is described
in practitioner-oriented treatments of catastrophe risk modelling [12].

Recent climate physical risk assessment (PRA) and climate change risk assessment
(CCRA) work builds naturally on the same decomposition, but adds scenario condition-
ing, spatial-temporal resolution constraints, and climate-model uncertainty. In particular,
portfolio-scale CCRA requires separating changes in hazard from changes in exposure, be-
cause their interaction can magnify or attenuate losses [13]. Integrating climate scenarios
into NatCat-style workflows typically requires explicit choices around downscaling and bias
correction, which can materially influence hazard projections and therefore pricing and cap-
ital metrics [14, 15, 16, 17]. At the same time, climate disclosure and supervisory stress
testing have accelerated demand for portfolio-level methodologies that are transparent and
auditable [18, 19, 20].

The contract-design literature explains parametric insurance in the abstract language
of I(X) and basis risk, and multi-hazard reviews provide useful design taxonomies [3, 8].
However, these literatures do not typically track how parametric products have evolved
operationally inside the insurance ecosystem: namely, as contractual overlays on the
catastrophe-modelling pipeline that already governs underwriting, portfolio aggregation,
reinsurance/ILS structuring, and solvency reporting.

This paper therefore adopts a pipeline-first notion of parametric insurance. We define
NatPar programmes as contracts whose triggers, payouts, and validation procedures are
explicitly designed to be compatible with the NatCat supply chain and its portfolio outputs.
In this view, basis risk is not merely a single summary statistic but the measurable interface
created when (exposure × vulnerability) is replaced by a low-dimensional, index-verifiable
hazard proxy. This is also where model governance lives: NatPar design should be readable
in the same reporting language as NatCat (AAL, EP/AEP/OEP, tail metrics), with explicit
basis distributions and basis exceedance curves as diagnostics.
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3 NatCat machinery in practitioner terms

This section summarises the catastrophe-modelling workflow that underpins NatCat under-
writing and portfolio reporting. We focus on the modelling blocks and the portfolio outputs
that are used in practice, because NatPar is defined in this paper as a pipeline-compatible
overlay on the same machinery.

3.1 The four modeling blocks: hazard, exposure, vulnerability, financial
terms

A standard NatCat model can be represented as a modular pipeline:

Hazard
→ Vulnerability → Financial terms

Exposure

The purpose of this decomposition is operational: each block can be updated, validated,
and governed with its own data sources and model risk controls, while still producing
consistent portfolio outputs.

Hazard. The hazard block specifies an event set (or stochastic process) for the peril,
including frequency, intensity, and spatial footprints where relevant. In climate settings,
the hazard block may also be conditioned on scenarios or nonstationary assumptions.

Exposure. The exposure block specifies what is at risk and where: locations, sums
insured/values, relevant asset attributes, and aggregation rules. Exposure is often the
most rapidly changing component in practice, and it is also a major driver of accumulation
risk.Our main message is that m

Vulnerability. The vulnerability block maps hazard intensity (and modifiers) to dam-
age ratios or loss distributions. It captures construction/asset sensitivity, secondary uncer-
tainty, and model error.

Financial terms. Financial terms transform ground-up loss into contractual loss: de-
ductibles, limits, layers, aggregates, reinstatements, and other features that define the
insurer or reinsurer liability.

3.2 Portfolio loss

Let Yr denote the contractual loss after applying financial terms for the set of covered risk
r ∈ R. Here R is a set of risks, that can be for example a deterministic set of regions (as
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we use in this paper), or even a random set of events (such as r ∈ R ≡ 1 ≤ r ≤ Nt for a
Poisson process Nt).

Portfolio-level reporting commonly distinguishes:

Occurrence loss: M := max
r
Yr, Aggregate loss: S :=

∑
r

Yr.

These are the random quantities that generate standard NatCat outputs such as OEP and
AEP curves.

NatCat portfolio reporting distinguishes between exceedance probabilities for annual
occurrence loss (OEP) and annual aggregate loss (AEP). Using the annual variables the
one-year curves are defined as

OEP(x) := P (M > x) , AEP(x) := P (S > x) , x ≥ 0.

In general, these curves differ because a year can contain multiple loss-causing events:
OEP captures the tail of the single largest event, while AEP captures the tail of the sum
of events. They coincide only in special cases (e.g. when there is at most one loss-causing
event per year in the model, or when financial terms collapse event losses into a single
outcome).

Return periods. A common presentation uses return periods. For any liabilityX, define
the T -year return level

xT (X) := inf {x : P (X > x) ≤ 1/T} .

Return-period curves T 7→ xT (·) provide an interpretable mapping from tail probability
to severity. For a return period T (years), the corresponding OEP return-period loss level
xOEP
T satisfies OEP

(
xOEP
T

)
= 1/T , and similarly for AEP.

4 NatPar framework

NatPar programmes are defined here as parametric structures anchored in the catastrophe-
modelling workflow and evaluated in the same portfolio language as NatCat (AAL, EP/AEP/OEP
curves, return periods, tail metrics). The central additional object is basis risk, which we
treat as an auditable interface rather than an afterthought.

4.1 NatPar payout classes and their implications for tails and basis

A practical advantage of a pipeline-first view is that NatPar designs can be organised into
a small number of payout classes, each with predictable implications for tail metrics and
basis risk. This section provides a compact taxonomy used later to interpret the case study.
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(i) Continuous bounded payouts (graded contracts). Contracts of the form P =
I(X) with I continuous and bounded (e.g. P = q (D(X)− d)+ with D ∈ [0, 1]) mechan-
ically cap the insurer’s liability and often reduce high-quantile tail metrics relative to
exposure-scaled indemnity losses, even under AAL-neutral calibration. Their basis risk
tends to be diffuse: frequent moderate mismatch can occur because payouts do not scale
with realised exposure, but severe basis shortfalls can be controlled by the cap and by
shaping I(·).

(ii) Piecewise-linear / tiered payouts. Piecewise-linear or tiered payouts provide
additional flexibility while remaining transparent and auditable. They can be used to ap-
proximate layer-like behaviour (e.g. increasing payout rate as hazard severity increases)
and to enforce constraints such as VaR0.995(P ) ≤ c while still targeting basis shortfall ob-
jectives. In a governance setting, the breakpoints of I(·) become explicit design parameters
that can be stress-tested and versioned.

(iii) triggers-driven events. A trigger-driven event (or simply binary) P = q1{X∈event},
for a particular event set event and index X for a payout q, is maximally simple and highly
verifiable, and they often align with operational objectives such as rapid cashflow upon a
threshold event. However, their loss distribution is discrete, which can have unintuitive
implications: for a trigger probability 1− α (i.e., P{X ∈ event} = 1− α), tail metrics can
“jump” at confidence levels above α (e.g. VaR0.995 may equal q when α = 0.99). As a result,
AAL-neutrality does not guarantee capital advantages, and these type of binary designs
can concentrate basis mismatch into rare but large shortfalls or overpayments depending
on how q is calibrated.

(iv) Layer-like parametric designs. Between continuous and binary extremes lie para-
metric designs that emulate insurance layers (e.g. step functions with multiple thresholds,
or capped linear segments). These are often the most directly comparable to indemnity
layer structures and can be tuned to match both AAL and a tail constraint, while keeping
the trigger logic auditable.

4.2 NatCat to NatPar through AAL-neutral calibration

Let Y denote the NatCat contractual loss (for a policy, region, or portfolio segment), and
let T denote an index (typically a hazard proxy or near-hazard proxy) that is observable
and verifiable. A NatPar design specifies a payout rule P = I(T ) together with contract
terms such as caps, layers, and trigger thresholds.

A natural baseline calibration target is AAL-neutrality:

E [P ] = E [Y ] .
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This constraint ensures that differences in EP curves and tail metrics primarily reflect dis-
tributional shape rather than mean loss. In practice, this can be implemented at different
granularities (policy-level, peril-region segment, or portfolio bucket), and it can be sup-
plemented by loadings for expenses and profit. The key point is that AAL-neutrality is a
comparability device, not a full design criterion.

4.3 Basis risk as an auditable interface

The fundamental trade-off is that P is transparent and bounded but cannot replicate Y
pointwise; the resulting mismatch is basis risk. Therefore, define basis risk as

B := Y − P.

4.3.1 Individual risk basis.

Two useful metric to view a basis risk are

• Point measures. This means measures that can represent the basis risk through a
single scalar such as P(B > 0), E [B+], E

[
(−B)+

]
, corr (Y, P ), etc.

– P (B > 0) distinguishes whether the design tends to miss loss states (high short-
fall frequency) or to pay in non-loss states (high overpayment frequency).

– The severities E [B+], E
[
(−B)+

]
are the relevant averages conditional on sign:

they quantify the expected size of liquidity missing when loss occurs (shortfall)
and the expected size of liquidity excess when it is not needed (overpayment).

– The indemnity-parametric correlation corr (Y, P ) indicate how the statistical
mismatch between the real pay-off and the parametric product can be measured.

• Tail measures. While point summaries are useful but can hide whether mismatch is
driven by frequent small shortfalls or rare severe ones. To make basis risk governable,
we treat it as a distributional object and report exceedance curves:

BEP+ (x) := P (B > x) , BEP− (x) := P (−B > x) .

These “Basis EP” curves sit naturally next to NatCat EP curves and provide a tail-
sensitive diagnostic of shortfall risk and overpayment risk.

Basis EP curves provide a portfolio-style, tail-sensitive view of mismatch. The short-
fall curve BEP+(x) = P(B > x) answers: how often does the indemnity benchmark
exceed the parametric payout by more than x? The overpayment curve BEP−(x) =
P(−B > x) answers: how often does the parametric payout exceed the indemnity
benchmark by more than x?

These curves are operational for governance because they separate:
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– frequency of mismatch (the level of BEP near x = 0),

– severity of mismatch (how slowly BEP decays for large x),

– direction of mismatch (shortfall vs overpayment, via BEP+ and BEP−), and
they can be compared across candidate contract shapes even when AAL is
matched.

Return-period interpretation (basis return periods). Just as EP curves are often
communicated via return periods, basis EP curves can be summarised by basis return-
period levels. For a return period T (years), define the shortfall-basis return-period level
b+T by

BEP+
(
b+T
)
= P

(
B > b+T

)
=

1

T
,

and similarly define the overpayment-basis return-period level b−T by

BEP− (b−T ) = P
(
−B > b−T

)
=

1

T
.

Reporting (b+T , b
−
T ) for a small set of T values (e.g. T ∈ {10, 20, 50}) yields a compact

and interpretable summary of basis-tail behaviour that can sit next to the standard loss
return-period table.

4.3.2 Portfolio basis: aggregate and occurrence.

Let Br = Yr − Pr denote the basis for the risk r ∈ R. In a multi-region portfolio, basis
reporting must distinguish between (i) the aggregate mismatch over all regions in the model
year, and (ii) the occurrence (worst-region) mismatch that can dominate operational and
regulatory concerns.

Given portfolio, define the aggregate basis as

SB =
∑
r∈R

Br = SY − SP .

This quantity is natural when the objective is balance-sheet impact and annual aggregate
liquidity, and it aligns with AEP-style reporting for liabilities. For basis regulation and
suitability, we additionally introduce an occurrence basis that captures the worst regional
mismatch within the year:

MB = max
r∈R

Br.

The occurrence basis is the appropriate object when basis risk is interpreted as an op-
erational shortfall/overpayment exposure that can be driven by a single region, even if
the portfolio aggregate is moderate. This parallels the NatCat distinction between AEP
and OEP, and it is particularly relevant for supervisory review because it measures basis
accumulation: the most adverse mismatch that the index can generate in a given year.

Two useful metric to view a basis risk are
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• Point measures. Similar to the above this means measures that can represent

the portfolio basis risk through P
(
SB > 0

)
, E
[(
SB
)+]

, E
[(
−SB

)+]
, corr

(
SY , SP

)
,

P
(
MB > 0

)
, E
[(
MB

)+]
, E
[(
−MB

)+]
, corr

(
MY ,MP

)
.

• Tail measures. Similar to above we can also look at the tail:

BAEP+ (x) := P
(
SB > x

)
, BAEP− (x) := P

(
−SB > x

)
.

BOEP+ (x) := P
(
MB > x

)
, BOEP− (x) := P

(
−MB > x

)
.

Basis return levels b
±,{·}
T for the portfolio can be defined by

BAEP± (b±T ) = P
(
SB > b±T

)
=

1

T
,

BOEP± (b±T ) = P
(
MB > b±T

)
=

1

T
.

4.4 Minimal reporting template

For each NatPar candidate design (within a region/segment/etc), report:

1. Mean comparability: AAL as the calibration target.

2. Tail comparability: EP/AEP/OEP, return-period levels.

3. Basis interface:

• point diagnostics.

• basis tails: BEP/BAEP/BOEP, return-period levels.

4. Capital metrics: VaR0.995 (and TVaR where feasible).

As we will see in Section 5 we implement this reporting template in a stylised frost lab-
oratory. We compare a continuous bounded NatPar design to an indemnity benchmark
and then compare an extreme indemnity layer to an binary design, illustrating how payout
shape can dominate tail capital even under AAL-neutral calibration.

The frost laboratory in Section 5 uses a continuous and a binary as two archetypes that
bracket the design space. The former illustrates how removing exposure-scaled variability
and bounding payouts can shorten tails; the latter illustrates how digital triggers can shift
probability mass into capital-relevant quantiles, making explicit why payout shape must
be treated as a first-order design decision rather than a cosmetic contract feature.
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5 Two design blocks and one reporting language for individ-
ual risk

This section operationalises the NatCat-to-NatPar mapping in a stylised frost laboratory
(two regions, one seasonal outcome per year) and reports outputs in the same portfolio
language used in catastrophe practice for an individual risk. The point is not to build the
most realistic frost model, but to make the workflow explicit: starting from a NatCat loss
specification, constructing a NatPar payout that is legible to underwriting and governance,
calibrating it to a transparent target, then constructing the reporting framework and finally
comparing the two using the same diagnostics. Note that in order to better focus on the
reporting and regulatory framework, we assume there is only one season and one region.
This implies that AEP = OEP = EP. In the numerical assessment we will use a portfolio
in addition to the individual risk.

5.1 Common notations

We index regions by r ∈ {FL,CA}. In the frost laboratory each season produces at most
one relevant frost outcome per region. Hence, within a region, annual aggregate and annual
occurrence losses coincide, and the usual catastrophe reporting objects (AEP/OEP) reduce
to a single exceedance curve. This “one-loss-per-year” structure is deliberate: it isolates
the effect of contract design and basis risk without confounding from within-year event
counts.

State variables and loss components. For each region r:

• Tr denotes the (seasonal) trigger e.g., minimum temperature as hazard proxy/index.

• Ar denotes seasonal exposure e.g., monetary value at risk.

• D (τ) ∈ [0, 1] denotes a non-increasing hazard-driven damage fraction (vulnerability
curve). We assume D (τ) > 0 ⇔ τ < τt, for a given τt and D (τ) < 1 ⇔ τ > τc. The
left inverse of D is denoted by D−.

• Lr denotes ground-up loss. In this paper we consider the multiplicative form Lr =
ArDr. We use the notation Dr = D (Tr), throughout the paper.

Let us introduce the following exposure fucntions.

• The CDF being denoted by:

FA (x) := P (A ≤ x) ,

• The call functional
CA (x) := E

[
(A− x)+

]
.
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NatCat vs. NatPar payoffs. We write contractual (NatCat-type) indemnity loss as a
transformation of ground-up loss,

Yr := ψ (Lr) ,

where ψ captures financial terms (e.g. deductible/stop-loss layer). The parametric (NatPar-
type) payout depends only on the hazard proxy,

Pr := I (Tr) ,

where I(·) is the payout function (continuous, piecewise, or binary).

Calibration convention (comparability device). Within each region and design
block, we calibrate NatPar by an AAL-neutral principle:

E [Pr] = E [Yr] ,

so differences in EP curves, tail metrics, and basis risk reflect distributional shape and index
mismatch rather than differences in mean payout. This is a comparability device, not a
claim of optimality.

Ground-up loss. The seasonal ground-up loss is multiplicative:

Lr := ArD (Tr) = ArDr.

This is the canonical NatCat construction: hazard produces a state (T ), vulnerability maps
hazard to a fractional impact (D), and exposure scales impact into monetary loss (A×D).
In this form, uncertainty in A loads directly into the loss distribution whenever Dr > 0.

NatCat indemnity cover with deductible. We benchmark against a simple de-
ductible (stop-loss) indemnity form with region-specific deductible dr ≥ 0:

Yr := (Lr − lr)
+ = max (ArDr − lr, 0) .

Because the frost laboratory produces at most one relevant frost loss per season in each
region, Yr is simultaneously the event loss, the annual occurrence loss, and the annual
aggregate loss for that region. This is precisely what makes the example a clean labora-
tory for comparing EP curves, return levels, and tail metrics under a single-period loss
distribution.
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5.2 NatCat: Analytic EP and AAL representations

The analytic structure used later for basis risk begins already at the NatCat benchmark.
Fix a region r and a threshold x ≥ 0. The exceedance probability of indemnity loss is

EPCat
r (x) = EPr(x) := P (Yr > x) = E

[
FAr

(
lr + x

Dr

)]
(1)

where FAr is the exposure survival in region r. This form makes explicit the supply-
side sensitivity: tail exceedance is controlled by the probability that exposure exceeds a
hazard-dependent threshold proportional to dr+x

Dr
.

Similarly, the average annual loss (AAL) of the deductible indemnity admits the con-
ditional form

AALCat
r = E

[
DrCAr

(
lr
Dr

)]
. (2)

Equations (1)–(2) show that, in the ground-up NatCat benchmark, exposure uncer-
tainty enters the liability distribution through FAr (and through σA,r equivalently). This
is the structural mechanism that NatPar will later modify: once payout depends only on Tr
(and is AAL-calibrated), exposure uncertainty drops out of the insurer’s liability distribu-
tion, but it reappears as a measurable residual mismatch in the basis variable Br = Yr−Pr.

5.3 NatPar: Analytic EP and AAL representations

We now construct a NatPar contract that is “supply-side natural” in the sense that it is
designed directly from the hazard–vulnerability block and is priced and governed with the
same loss-distribution diagnostics used in catastrophe practice. The key structural change
relative to the NatCat benchmark is that the payout depends only on the observable hazard
proxy Tr (through the damage function), not on exposure Ar. So in a,t similar manner the
ground-up payout in parametric is defined as

Lc
r = (Dr − dr)

+ ,Lb
r = 1{Tr<τr} = 1{Dr>dr}

where D(·) is the same vulnerability curve used in the NatCat benchmark and dr = D (τr)
where τr is a region specific trigger. This payoff is (i) fully index-driven (depends only on
Tr), (ii) bounded by construction (0 ≤ P c

r ≤ qr), and (iii) interpretable: qr is the maximum
payout and Dr controls how the payout increases as temperatures fall.

5.3.1 Continuous parametric payout.

Define a continuous payout NatPar as follows:

P c
r := qcrLc

r = qcr (Dr − dr)
+ . (3)
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To compare distributional shape rather than mean level, we choose qcr such that NatPar is
AAL-neutral to the NatCat benchmark indemnity Yr:

AALr := E [P c
r ] = E [Yr] . (4)

Substituting (3) into (4) yields the explicit calibration

qcr =
E
[
(ArDr − lr)

+]
E
[
(Dr − dr)

+] =
E
[
DrCA

(
lr
Dr

)]
CDr (dr)

. (5)

Because P c
r depends only on Tr, its EP curve has a simple hazard-only representation. For

any threshold x ≥ 0,

EPc
r(x) := P (P c

r > x) = FDr

(
x

qcr
+ dr

)
(6)

In the frost laboratory (one-loss-per-season), this EP curve is simultaneously the AEP and
OEP curve.

5.3.2 Binary payout.

NatPar binary payout is a binary contract given as follows:

P b
r = qbrLb

r = qbr1{Tr<τr}, (7)

with AAL-neutral calibration E
[
P b
r

]
= E [Yr]. By substituting into the equations (7) into

the AAL neutrality we get:

qbr =
E
[
(ArDr − lr)

+]
P {Dr > dr}

=
E
[
DrCA

(
lr
Dr

)]
FDr (dr)

. (8)

Therefore, we easily can get the exceedance as follows:

EPb
r (x) =

{
FDr (dr) , x ≤ qbinr

0 x > qbinr

.

As we mentioned earlier in the frost laboratory EP curve is simultaneously the AEP and
OEP curve:

AALr := E
[
P b
r

]
= E [Yr] .
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5.4 Basis risk diagnosis

A central governance concern in parametric risk transfer is basis risk: the mismatch between
the indemnity-style loss Yr and parametric Pr. Let

B{·}
r := Yr − P {·}

r ,

for · ∈ {c, b}.

5.4.1 Point diagnosis

It is not difficult to show that

E
[
B{·},+

r

]
= E

[
DrCA

(
lr + P

{·}
r

Dr

)]

On the other hand, given the AAL neutrality, we get E
(
B

{·}
r

)
= 0 which implies E

(
B

{·},+
r

)
=

E
(
B

{·},−
r

)
. In addition, we can show that

Cov
(
Yr, P

{·}
r

)
= E

[
P {·}
r DrCA

(
lr
Dr

)]
−
(
AAL{·}

r

)2
.

Continuous NatPar. With P c
r,t, we get

1. E
[
Bc,+

r

]
= E

[
DrCAr

(
lr
Dr

)
1{Dr≤dr}

]
+ E

[
DrCAr

(
lr
Dr

+ qcr

(
1− dr

Dr

))
1{Dr>dr}

]
,

2. Var (P c
r ) = (qcr)

2

(
E

[
D2

r

((
1− dr

Dr

)+)2
]
− E

[
Dr

(
1− dr

Dr

)+]2)
,

3. Cov (Yr, P
c
r ) = qcrE

[
(Dr)

2

((
1− dr

Dr

)+)2

CA

(
lr
Dr

)]
− (AALr)

2 .

Binary NatPar. With P b
r , the same way we get,

1. E
[
Bb,+

r

]
= E

[
DrCAr

(
lr
Dr

)
1{Dr≤dr}

]
+ E

[
DrCAr

(
lr+qbr
Dr

)
1{Dr>dr}

]
,

2. Var
(
P b
r

)
=
(
qbr
)2 P (Dr > dr) (1− P (Dr > dr)) ,

3. Cov
(
Y, P b

)
= qbr

(
E
[
DrCAr

(
lr
Dr

)]
−AALrP (Dr > dr)

)
.
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5.4.2 Basis exceedance curve

In this part we treat basis risk as a distributional object, not just a point diagnostic. The
appropriate analogue of an EP curve is the exceedance-basis curve

BEP{·},+
r (x) := P

(
B{·}

r > x
)
, x ≥ 0,

For symmetry we also report

BEP{·},−
r (x) := P

(
−B{·}

r > x
)
, x ≥ 0.

Here B
{·}
r > 0 is shortfall (parametric pays less than indemnity by more than x), while Br <

0 (or −Br > 0) is overpayment. Under the AAL-neutral calibration E
[
P

{·}
r

]
= E [Yr], we

have E
[
B

{·}
r

]
= 0, but this does not control tails: the relevant governance question is how

often and how severely the contract underpays (shortfall tails) and overpays (overpayment
tails).

Fix x ≥ 0 and condition on Tr. We distinguish two cases:

Deriving Shortfall exceedance. If Dr = 0, then Yr = P c
r = 0 and Bc

r = 0. If Dr > 0,
then

B{·}
r > x⇐⇒ (ArDr − lr)

+ > x+ P {·}
r ⇐⇒ Ar >

lr + x+ P
{·}
r

Dr
.

Therefore, as FAr

(
lr+x+P

{·}
r

Dr

)
> 0 implies Dr > 0 we get:

BEP{·},+
r (x) = E

[
FAr

(
lr + x+ P

{·}
r

Dr

)]
. (9)

Deriving Overpayment exceedance. If Dr = 0, then Yr = P c
r = 0 and Bc

r = 0. If
Dr > 0, we can consider two cases.

• Case 1: ArDr−lr > 0. This implies −Bc
r = P

{·}
r −Yr > x⇐⇒ lr

Dr
< Ar <

lr−x+P
{·}
r

Dr
.

This also implies P
{·}
r > x.

• Case 2: ArDr − lr ≤ 0. This implies Bc
r < −x ⇐⇒ P

{·}
r > x. This also implies

Dr > 0.

So combining the two:

BEP{·},−
r (x) = E

[
FAr

(
lr − x+ P

{·}
r

Dr

)
1{

P
{·}
r >x

}
]
. (10)
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5.5 Continuous NatPar basis analysis: analytic shortfall and overpay-
ment

Under the baseline independence assumptions, basis exceedance admits a conditional re-
duction to the exposure CDF FA,r, in the same spirit as the NatCat EP reduction in
(1).

Shortfall exceedance. Therefore,

BEPc,−
r (x) = E

[
FAr

(
lr + x

Dr
+ qcontr

(
1− dr

Dr

))
1{Dr>dr}

]
+ E

[
FAr

(
lr + x

Dr

)
1{Dr≤dr}

]
.

(11)

This formula shows explicitly how exposure uncertainty enters shortfall tails: even though
the NatPar payout is hazard-only, the probability of severe shortfall is controlled by the
upper tail of exposure through 1− FAr(·).

Overpayment exceedance. Overpayment is piecewise because Yr,t is truncated by the
deductible. We get the following result:

BEPc,−
r (x) = E

[
FAr

(
lr − x

Dr
+ qcontr

(
1− dr

Dr

))
1{

Drqcontr

(
1− dr

Dr

)
>x

}] . (12)

5.6 Binary NatPar: analytic shortfall and overpayment

Because Pr is piecewise constant in the hazard proxy, the basis distribution decomposes
cleanly by whether the trigger fires:

Shortfall exceedance. For x > 0, we get

BEPb,+
r (x) = E

(
FAr

(
lr + x+ qbinr

Dr

)
1{Dr>dr}

)
+ E

(
FAr

(
lr + x

Dr

)
1{Dr≤dr}

)
. (13)

Each term admits the same exposure-CDF reduction as in (1), with thresholds lr+x
Dr

and
lr+x+qbinr

Dr
, respectively.

Overpayment exceedance. Similarly,

BEPb,−
r (x) =

{
E
(
FAr

(
lr−x+qbinr

Dr

)
1{Dr>dr}

)
, qbinr > x

0, qbinr ≤ x
. (14)
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6 Reporting the frost risk example

We begin with a stylised frost model in two regions r ∈ {FL,CA} (representing Florida and
California). A winter season t is characterised by the seasonal minimum temperature Tr
(hazard proxy) and a seasonal exposure Ar (value at risk). The objective of this subsection
is twofold: (i) to make the NatCat “hazard–exposure–vulnerability” loss construction ex-
plicit, and (ii) to express key distributional objects (EP curves and AAL) in a conditional
form that will later carry over verbatim to basis-risk analysis.

6.1 Hazard–exposure–vulnerability and NatCat indemnity

Hazard (temperature). For each region r, seasonal minimum temperature is modelled
as Gaussian and independent across seasons:

Tr ∼ Normal
(
µT,r, σ

2
T,r

)
.

Region-specific parameters (µT,r, σT,r) are reported in the input-parameter table.1 This is
the hazard component of the NatCat stack.

Exposure (value at risk). Exposure is modelled as lognormal:

Ar ∼ LogNormal
(
µA,r, σ

2
A,r

)
, Ar,t > 0.

Rather than parameterising by (µA,r, σA,r) directly, we specify (by region) the mean Ār :=
E[Ar,t] and the coefficient of variation

CVA,r :=

√
Var(Ar,t)

Ār
,

which is a natural underwriting summary of exposure uncertainty. These imply the log-
normal parameters

σ2A,r = ln
(
1 + CV2

A,r

)
, µA,r = ln

(
Ār

)
− 1

2σ
2
A,r.

Across seasons, (Ar,t)t are independent. As a simplifying baseline we assume

Tr ⊥ Ar,

so exposure variability is not mechanically linked to hazard realizations. This independence
is relaxed in extensions (e.g. copulas or Ar | Tr regression) if dependence is empirically
material.

1The Gaussian assumption is used for transparency in the laboratory. Any alternative calibrated
marginal for T can be substituted without changing the NatCat–NatPar logic.
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Vulnerability (temperature–damage). Let D : R → [0, 1] denote the frost damage
fraction:

D(τ) =


0, τ > τc,(
τ − τc
τt − τc

)η

, τt ≤ τ ≤ τc,

1, τ < τt,

(τ1, τ0, η) = (28, 20, 1.5),

where τt is the critical temperature at which damage begins, τt < τc is the temperature
at which damage is total, and η > 0 controls curvature. In the following we illustrate the
damage function in Figure 1.

Figure 1: Citrus fruit damage function from frost.

6.2 Basis risk diagnostics

This subsection compares the NatCat extreme-layer benchmark to two NatPar designs
(continuous and binary) using exceedance and return-period diagnostics. Within each
(r, β) block we enforce AAL-neutrality, so all differences reported below come from tail
shape and basis structure, not from mean level.

For each region r we simulateN seasons and compute damage and loss asDr = D (Tr) ∈
[0, 1] and Lr = ArDr. For each β ∈ {0.90, 0.95, 0.99} we define the NatCat extreme-layer
benchmark via

lr,β := VaRβ (Lr) , Yr,β := (Lr − lr,β)
+ ,

and set the NatPar trigger on damage at the same percentile,

dr,β := VaRβ (Dr) .
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We evaluate two NatPar archetypes:

P c
r,β = qcr,β (Dr − dr,β)

+ , P b
r,β = qbr,β1{Dr>dr,β}.

Both designs are calibrated by AAL-neutrality relative to Yr,β . Hence, within each (r, β),
the benchmark Yr,β and both NatPar payouts have equal mean, but potentially very dif-
ferent tails and mismatch (basis) behaviour.

6.2.1 Individual risk

In the following we will be looking into each individual risk associated with the two region.

Exceedance probability curves (liability tails) We compare the exceedance prob-
ability (EP) functions on a log scale. The binary design has a structural feature: P b

r,β

places a point mass at qbr,β , so EPb,+(x) is essentially flat up to that level and drops to zero
immediately after. This creates visible “digital” tail geometry relative to the smoother
benchmark and the continuous design; see Figure 2.

Figure 2: Exceedance probability curves for Yr,β , P
{·}
r,β (log scale), by region and β.

Point diagnosis of basis risk Before presenting tail curves, we report a set of point
diagnostics that summarize the sign and average magnitude of basis mismatch at the
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calibrated layer. For each region r and confidence level β, we construct the indemnity-
layer benchmark Yr,β = (L− lr,β)

+ and two NatPar designs, continuous P c
r,β and binary

P b
r,β , calibrated by mean matching E

[
P

{·}
r,β

]
= E [Yβ].

Table 1 reports the calibration levels and dependence diagnostics, including (lr,β, dr,β , qr,β),

E [Yr,β ], and Cov
(
Yr,t,β, P

{·}
r,β

)
/ Corr

(
Yr,β, P

{·}
r,β

)
. Table 2 reports the basis mismatch de-

composition: P
(
B

{·}
r,β > 0

)
, P
(
B

{·}
r,β < 0

)
, E
[(
B

{·}
r,β

)+]
(average shortfall), and E

[(
B

{·}
r,β

)−]
(average overpayment). These point diagnostics capture the frequency and average size of
mismatch, while the subsequent EP and return-period plots describe the tail behavior.

Region β Design lr,β dr,β qr,β E[Yβ ] Var(B) Corr(Yβ , Pβ)

FL 0.90 c 11.58 0.05 257.77 5.12 107.95 0.91
FL 0.90 b 11.58 0.05 51.16 5.12 368.93 0.62
FL 0.95 c 42.12 0.18 275.78 2.96 103.10 0.86
FL 0.95 b 42.12 0.18 59.20 2.96 224.00 0.64
FL 0.99 c 137.84 0.54 346.45 0.69 62.19 0.64
FL 0.99 b 137.84 0.54 68.82 0.69 66.34 0.57
CA 0.90 c 81.09 0.41 209.43 6.48 91.55 0.92
CA 0.90 b 81.09 0.41 64.76 6.48 255.81 0.77
CA 0.95 c 136.42 0.69 231.27 2.47 67.21 0.80
CA 0.95 b 136.42 0.69 49.36 2.47 84.22 0.74
CA 0.99 c 215.21 1.00 0.00 0.30 16.39 NaN
CA 0.99 b 215.21 1.00 0.00 0.30 16.39 NaN

Table 1: Point diagnosis: calibration levels and dependence.

Region β Design P(P > 0) P(B > 0) P(B < 0) E[B+] E[(−B)+]

FL 0.90 c 0.10 0.05 0.06 0.98 0.98
FL 0.90 b 0.10 0.04 0.07 2.13 2.13
FL 0.95 c 0.05 0.03 0.03 0.79 0.79
FL 0.95 b 0.05 0.02 0.03 1.25 1.25
FL 0.99 c 0.01 0.01 0.01 0.33 0.33
FL 0.99 b 0.01 0.01 0.01 0.36 0.36
CA 0.90 c 0.10 0.05 0.06 1.16 1.16
CA 0.90 b 0.10 0.05 0.06 2.12 2.12
CA 0.95 c 0.05 0.03 0.03 0.75 0.75
CA 0.95 b 0.05 0.03 0.03 0.88 0.88
CA 0.99 c 0.00 0.01 0.00 0.30 0.00
CA 0.99 b 0.00 0.01 0.00 0.30 0.00

Table 2: Point diagnosis: basis mismatch decomposition.

Basis exceedance curves (shortfall vs overpayment) We report the two-sided basis
exceedance functions shortfall and overpayment. These separate consumer-protection tail
risk (shortfall) from capital/pricing tail risk (overpayment). In the outputs, the binary
design typically exhibits a sharper truncation in one basis tail (due to the fixed payout
size), while the continuous design exhibits smoother decay see Figure 3.

Return-period levels and return-period curves A key feature in the results is the
presence of many zeros at low return periods: for the layer Yr,β = (L− lr,β)

+, we have
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Figure 3: Basis exceedance curves for continuous and binary NatPar by region and β (log
scale).

P (Yr,β > 0) = 1− β, so when 1/T ≥ 1− β the return level is exactly zero. This is visible
for β = 0.90 up to T = 10, for β = 0.95 up to T = 20, and for β = 0.99 up to much larger
T in several region/design combinations.

The binary payout also produces plateau behaviour in xT

(
P b
r,β

)
because of its point

mass at qbr,β . Once T exceeds the reciprocal of the trigger probability, the return level
cannot increase further and saturates at the fixed payout size; see Figure 4.

Basis return-period levels: T -year shortfall and overpayment We summarise
basis tails via

b+T (B) := xT (B), b−T (B) := xT (−B),

so b+T is the T -year shortfall magnitude and b−T is the T -year overpayment magnitude.
Results show that the binary design can generate substantially larger shortfall return levels
at high T (e.g. for β = 0.90 and β = 0.95, b+T (B

b) notably exceeds b+T (B
c) at T = 100, 200),

reflecting that fixed payouts can under-respond to the largest indemnity-layer realisations
even under AAL matching; see Figure 5.

Capital metrics. To support solvency-style benchmarking, we additionally report one-
year tail capital metrics for the NatPar liability P and, for reference, for the matched
NatCat layer Y . Specifically, for each region r and layer confidence β, we compute VaR0.995
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Figure 4: Return-period curves T 7→ xT (·) for Yr,β , P
{·}
r,β , by region and β.

Figure 5: Return-period curves for basis tails: T 7→ b+T (shortfall) and T 7→ b−T (overpay-
ment), for both continuous and binary NatPar, by region and β.
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(and TVaR0.995 where feasible) for Yβ and for each NatPar design P c
β and P b

β. These
quantities summarize extreme one-year liability levels and enable like-for-like comparison
between indemnity and parametric programmes on the same hazard/exposure base.

Table 3 reports VaR0.995 and TVaR0.995 for Yr,β , P
{·}
r,β across β ∈ {0.90, 0.95, 0.99}. In

the laboratory setting (at most one seasonal event per year), these correspond directly to
EP/AEP return levels at exceedance probability 0.5%.

Region β VaR0.995(Yβ) TVaR0.995(Yβ) VaR0.995(P
c
β) TVaR0.995(P

c
β) VaR0.995(P

b
β) TVaR0.995(P

b
β)

CA 0.90 156.77 184.43 123.27 123.27 64.76 64.76
CA 0.95 101.44 129.10 71.34 71.34 49.36 49.36
CA 0.99 22.65 50.31 0.00 0.00 0.00 0.00
FL 0.90 172.24 243.83 166.81 209.95 51.16 51.16
FL 0.95 141.69 213.29 143.11 189.27 59.20 59.20
FL 0.99 45.98 117.57 55.90 113.89 68.82 68.82

Table 3: Capital metrics for NatCat layer Yr,β and NatPar liabilities P
{·}
r,β : VaR0.995 and

TVaR0.995, by region and layer β.

6.2.2 Portfolio risk

In the following we will be looking into the protfolio risk associated with the two region.

Simulation assumptions for the portfolio. The numerical assessment is based on
Monte Carlo samples of regional indemnity losses of the form (Lr = ArD(Tr)). Within
each region (r), the exposure factor (Ar) and the hazard driver (Tr) are taken to be in-
dependent, so that variation in severity arises from multiplicative exposure scaling and
the damage mapping (D(·)). At the portfolio level, regional sample pairs are combined
by aligning draws across regions; unless explicitly stated otherwise, this corresponds to
treating (AFL, TFL) and (ACA, TCA) as independent. If the regional samples are generated
from common-year (shared-path) climate simulations, then any cross-region dependence in
(TFL, TCA) is inherited from that data-generation step rather than imposed by the aggre-
gation code.

Exceedance probability curves (liability tails) We compare the exceedance proba-
bility (EP) functions on a log scale for the liabilites in the portfolio. In more details we
compare the OEP and AEP of the indemnity and the parametric products.

Point diagnosis of basis risk Let B
{·}
r,t,β = Yr,β − P

{·}
r,β denote the basis in region r at

layer β (continuous or binary).
Given portfolio, define the aggregate basis as

SB{·}
β =

∑
r∈R

B
{·}
r,t,β = SY

β − SP {·}
β .
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Figure 6: AEP and OEP for the indemnity and parametric portfolio.

This quantity is natural when the objective is balance-sheet impact and annual aggregate
liquidity, and it aligns with AEP-style reporting for liabilities.

For basis regulation and suitability, let:

MB{·}
β = max

r∈R
B

{·}
r,β .

Point measures. Similar to the above this means measures that can represent the

portfolio basis risk through P
(
SB{·}
β > 0

)
, E
[(
SB{·}
β

)+]
, E
[(

−SB{·}
β

)+]
, corr

(
SY
β , S

P
β

)
,

P
(
MB{·}

β > 0
)
, E
[(
MB{·}

β

)+]
, E
[(

−MB{·}
β

)+]
, corr

(
MY

β ,M
P
β

)
.

Scope Design β E[Y ] Corr(Y, P ) Var(B)

Agg b 0.90 11.59 0.70 624.45
Agg c 0.90 11.59 0.92 199.54
Agg b 0.95 5.43 0.68 308.34
Agg c 0.95 5.43 0.84 170.47
Agg b 0.99 0.99 0.53 82.75
Agg c 0.99 0.99 0.60 78.55
Occ b 0.90 11.29 0.69 423.10
Occ c 0.90 11.29 0.91 113.43
Occ b 0.95 5.35 0.67 211.30
Occ c 0.95 5.35 0.84 95.60
Occ b 0.99 0.99 0.53 60.59
Occ c 0.99 0.99 0.60 51.29

Table 4: Aggregate vs Occurrence: level and dependence.
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Scope Design β P(P > 0) P(B > 0) P(B < 0) E[B+] E[(−B)+]

Agg b 0.90 0.19 0.09 0.12 4.12 4.12
Agg c 0.90 0.19 0.10 0.11 2.08 2.08
Agg b 0.95 0.10 0.05 0.06 2.10 2.10
Agg c 0.95 0.10 0.05 0.06 1.52 1.52
Agg b 0.99 0.01 0.02 0.01 0.66 0.36
Agg c 0.99 0.01 0.02 0.01 0.63 0.33
Occ b 0.90 0.19 0.09 0.11 4.16 3.94
Occ c 0.90 0.19 0.10 0.11 2.06 2.05
Occ b 0.95 0.10 0.05 0.06 2.10 2.05
Occ c 0.95 0.10 0.05 0.06 1.51 1.51
Occ b 0.99 0.01 0.02 0.01 0.66 0.36
Occ c 0.99 0.01 0.02 0.01 0.63 0.33

Table 5: Aggregate vs Occurrence: point diagnosis.

Tail measure. Then letBAEP±
β (x) = P

(
SB{·}
β > x

)
andBOEP±

β (x) = P
(
MB{·}

β > x
)
,

together with basis return levels Ab
±,{·}
T and Ob

±,{·}
T defined by BAEP±

β (x) = 1/T and

BOEP±
β (x) = 1/T .

Figure 7: BAEP and BOEP for the continuous and binary parametric portfolio.

Capital metrics. For each β ∈ {0.90, 0.95, 0.99} we then compute VaR0.995 and, where
feasible, TVaR0.995 for the benchmark NatCat layer SY,β and MY,β and for each NatPar
design Sc

P,β, M
c
P,β, S

b
P,β, M

b
P,β. These capital metrics quantify one-year extreme liability

levels under (i) diversification across regions in the aggregate view and (ii) worst-region
dominance in the occurrence view, and they provide a direct, like-for-like benchmarking of
parametric and indemnity-style tails on the same hazard/exposure base.
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Figure 8: Return-period curves for liabilities (Aggregate vs Occurrence)

Figure 9: Return-period curves for basis (Aggregate vs Occurrence, cont & bin, +/-)
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Scope β VaR0.995(Yβ) TVaR0.995(Yβ) VaR0.995(P
c
β) TVaR0.995(P

c
β) VaR0.995(P

b
β) TVaR0.995(P

b
β)

Agg 0.90 123.89 173.81 119.25 149.64 55.24 55.24
Agg 0.95 100.32 150.47 100.78 133.39 41.44 42.21
Agg 0.99 33.71 82.65 39.13 79.72 48.17 48.17
Occ 0.90 120.57 170.68 116.77 146.97 35.81 35.81
Occ 0.95 99.19 149.30 100.18 132.49 41.44 41.44
Occ 0.99 33.33 82.51 39.13 79.72 48.17 48.17

Table 6: Capital metrics for portfolio of NatCat layer Yr,β and NatPar liabilities P
{·}
r,β :

VaR0.995 and TVaR0.995, by layer β.

7 Results interpretation of the frost laboratory

Figures 2–3 reveal a systematic pattern: in the far tail, the shortfall component of basis
risk dominates the overpayment component. Interpreting this correctly requires separating
an economic conclusion (who benefits) from a mathematical one (why the tail geometry
looks the way it does). The plots primarily reflect a structural feature of the design: the
indemnity-layer benchmark Yr,β is driven by exposure–severity through L = AD, while the
parametric payouts are functions of the damage index D alone and are therefore bounded.

The core mechanism. In our setting L = ArDr, where the random exposure/severity
multiplier Ar > 0 is independent of Dr and may exhibit substantial right-tail variability,
while the damage ratio satisfies Dr ∈ [0, 1]. The NatPar designs are functions of D and
inherit its bounded support:

0 ≤ P b
r,β ≤ qbr,β, 0 ≤ P c

r,β ≤ qcr,β (1− dr,β) ,

where dr,β = VaRβ (Dr) and q
{·}
r,β are chosen to match the mean layer loss E [Yr,β ]. In

contrast, Yr,β = (ArDr − lr,β)
+ can be large whenever Ar is large enough, even if Dr is

only moderate. Consequently, in extreme states the basis behaves as

B
{·}
r,β = Yr,β − P

{·}
r,β ≈ Yr,β whenever Yr,β ≫ supP

{·}
r,β ,

so the far-right tail of B
{·}
r,β inherits the tail of Yβ while the overpayment side is capped. This

is the mathematical reason the return-period shortfall curves b+T

(
B

{·}
r,β

)
grow faster than

the corresponding overpayment curves b−T

(
B

{·}
r,β

)
in Figure 5, and why the basis exceedance

curves BEP+ remain comparatively heavy in Figure 3.

Unspanned severity. The dominance of shortfall is not merely “because P is bounded”;
it arises because a D-only payout cannot span exposure-driven severity. Large values of
Yr,β can occur via two mechanisms:

(i) large exposure) Ar large with moderateDr, (ii) large damage)Dr large with moderateAr.
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Binary and continuous NatPar designs respond only to mechanism (ii). Under indepen-
dence of A and D, mechanism (i) occurs with non-negligible probability in the tail, pro-

ducing states where Yr,β > 0 but P
{·}
r,β is small or zero, hence B

{·}
r,β is large and positive

(shortfall). In contrast, overpaymeY {\beta}nt requires the reverse mismatch: D large

(trigger) together with small Ar so that Yr,β is near zero while P
{·}
r,β is positive. Such

states exist, but their severity is capped by supP
{·}
r,β , and therefore overpayment does not

dominate at long return periods.

Profitability. It is tempting to read “shortfall dominates overpayment” as an issuer ad-
vantage and therefore a reason to underwrite the product. That inference is incomplete.
Overpayment corresponds to paying more than the benchmark layer and is indeed the is-
suer’s direct economic downside relative to Yr,β . Shortfall, however, is not a cash loss to the
issuer; it is a coverage failure borne by the policyholder and often a commercial or conduct
risk for the issuer. A design that generates large tail shortfalls may be capital-tractable
(bounded liability) but can be commercially fragile: it may underperform exactly when
protection is most expected, raising reputational risk, suitability concerns, and disclosure
requirements. Hence tail shortfall dominance is primarily evidence of bounded-liability
structure rather than a direct profitability statement.

Design implication. We select q
{·}
r,β to match E

[
P

{·}
r,β

]
= E [Yr,β] (AAL matching at the

layer). Figures 2 and 4 show that this mean matching can coexist with large differences
in tail behavior. The reason is structural: matching E [Yr,β ] does not control how Yβ de-
composes into exposure-driven versus damage-driven extremes. When exposure variability
dominates severity, a damage-only index necessarily under-replicates the far tail, producing
heavy BEP+ and large b+T .

In this numerical assessment, the observed dominance of tail shortfall reflects the com-
bination of (i) exposure-driven severity in L = ArDr with independent A and bounded D,
and (ii) D-only payouts that cap the issuer’s liability. The results should not be read as
“parametric is better,” but as a quantified statement about what this particular index can
and cannot span. If the intended objective is tail risk transfer (rather than bounded liq-
uidity), then either the index must incorporate exposure scaling (e.g. an exposure-adjusted
index) or the contract must explicitly acknowledge its capped nature through limits, dis-
closures, and suitability framing.

Individual risk: what changes once FL and CA are pooled The individual capital
table already shows that the two regional assets behave very differently in the far tail,
and that the difference is design-dependent. For FL, the benchmark layer Yβ remains
heavy-tailed: at β = 0.90 we have VaR0.995(Yβ) = 172.24 and TVaR0.995(Yβ) = 243.83,
whereas the continuous design tracks the tail more closely with VaR0.995(P

c
β) = 166.81
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and TVaR0.995(P
c
β) = 209.95. In contrast, the binary design is strongly capped, with

VaR0.995(P
b
β) = TVaR0.995(P

b
β) = 51.16, i.e. the tail becomes essentially “flat” beyond the

trigger. The CA asset is materially lighter in the far tail: at β = 0.90, VaR0.995(Yβ) =
156.77 and TVaR0.995(Yβ) = 184.43; and again the binary liability is capped (64.76) while
the continuous liability is closer to the benchmark (123.27). At β = 0.99, CA becomes
almost non-responsive in the tail under this index calibration: VaR0.995(P

c
β) = 0 and

VaR0.995(P
b
β) = 0, while Yβ still has non-zero tail levels (VaR0.995 = 22.65, TVaR0.995 =

50.31). This is an explicit “tail non-spanning” signal for CA at very high β under a D-only
trigger.

Portfolio versus individual risk Once we move to the two-asset portfolio, the point-
diagnosis tables clarify what pooling does and does not fix. First, the mean layer size
drops sharply as β increases, as expected for an exceedance layer: E[SY ] is about 5.52 at
β = 0.90, 2.81 at β = 0.95, and 0.57 at β = 0.99. This is not a “diversification” effect; it is
the mechanical effect of pushing the attachment deeper into the tail. The portfolio story
is instead in dependence and mismatch.

Second, the continuous design remains systematically more aligned with the benchmark
than the binary design, and the gap is quantitatively large. In the aggregate (AEP-style)
view, Corr(SY , SP ) is 0.91 for design c versus 0.65 for design b at β = 0.90; 0.85 versus
0.65 at β = 0.95; and 0.63 versus 0.56 at β = 0.99. This is exactly what one expects from
a “shape” argument: P c

β is proportional to the excess damage layer (D − dβ)
+ and can

respond continuously to severity once triggered, whereas P b
β is essentially a two-point mass

and cannot reproduce severity once it fires.
Third, and more importantly for governance, the portfolio basis dispersion is drastically

higher for the binary design. In the aggregate view, Var(SB) is 203.74 (design b) versus
61.14 (design c) at β = 0.90, i.e. more than a threefold increase in mismatch variability;
at β = 0.95, Var(SB) is 117.36 (b) versus 56.60 (c); even at β = 0.99, where both designs
become sparse/degenerate, the binary still does not improve (33.99 vs 31.94). This is the
numerical counterpart of what the basis-tail plots already suggest: the binary contract is
not just “capped”; it is capped in a way that concentrates the unspanned component into
the shortfall side B+ whenever exposure-driven severity dominates.

The same conclusion holds under the occurrence (OEP-style) lens. Your portfolio tables
show Var(MB) of 149.99 (b) versus 36.58 (c) at β = 0.90, and 84.31 (b) versus 32.46 (c) at
β = 0.95. This matters because the occurrence view is the one that bites for suitability and
operational stress: even if the aggregate mismatch nets out across assets in some years, a
single region can still experience a large shortfall. That is why, in addition to reporting the
aggregate basis SB =

∑
r Br, we recommend an occurrence basis as a regulatory object.

In a two-asset portfolio this can be reported as

MB := max{BFL, BCA},

32



which directly measures the worst regional liquidity shortfall/overpay created by the index
in any year. Importantly, this definition should be based on the per-asset basis terms (not
portfolio-level quantiles of L and D), because attachment and triggers are contractual at
the risk level; computing “portfolio” lportβ and dportβ mixes attachment/triggers across assets
and can mask the very cross-asset tail asymmetries the portfolio analysis is meant to reveal.

Overall, the portfolio does not reverse the individual diagnosis; it sharpens it. The
continuous design c preserves higher dependence with the benchmark and markedly lowers
mismatch dispersion in both AEP- and OEP-style views. The binary design b systemat-
ically increases dispersion of basis, which means that pooling two assets does not create
“free diversification” when the dominant unspanned driver is exposure severity in L = AD
and the payout depends only on D. In that sense, the portfolio results quantify a practical
warning: under a damage-only index, adding a second asset may reduce aggregate vari-
ance in years where one region does not trigger, but it does not eliminate the structural tail
shortfall mechanism, and the occurrence basis MB remains the binding governance metric.

Regulatory and reporting implication. The diagnostics in Figures 3 and 5 pro-
vide information that cannot be inferred from AAL and standard EP curves alone. In
particular, (i) basis exceedance curves BEP± summarize the frequency of extreme short-
fall/overpayment events as a function of severity, while (ii) basis return levels b±T translate
those exceedance probabilities into T -year “basis severities.” These quantities make ex-
plicit whether a parametric design is best interpreted as (a) a loss proxy with acceptable
tail mismatch, or (b) a bounded liquidity instrument whose tail protection is limited by
construction. For NatPar reporting, we therefore view the pair

(
BEP±, b±T

)
as essential

complements to the usual NatCat objects (AAL, EP curves, and return-period levels).

Market benefit: liquidity. A practical benefit of the bounded, index-linked structure
is not that it perfectly replicates tail loss, but that it can function as a contingent liquidity
instrument in markets where high exposure uncertainty creates insurability gaps. When
exposure variability is large (or difficult to verify quickly), indemnity-style settlement be-
comes slow and costly, and insurers may ration capacity or impose high deductibles and
strict wordings. A parametric contract tied to an observable hazard/damage index D
can still be offered because the liability is auditable and capped by construction. In this
interpretation, the product is best framed as fast liquidity when conditions are adverse
rather than as a full loss proxy: it pays quickly upon an index trigger, stabilizing cash
flows and enabling emergency response, operational continuity, and short-term financing,
even though basis shortfall may remain material in the far tail. The relevant question is
therefore not whether BEP+ can be made negligible, but whether the trigger and scale
deliver timely cash in the states where liquidity constraints bind, and whether residual loss
risk is transparently disclosed and, where needed, complemented by additional layers (e.g.
traditional cover, credit lines, or exposure-adjusted indices).
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8 Extensions and discussion

The frost example shows, in a highly controlled setting, how NatPar emerges naturally from
an existing NatCat model and how it changes the distribution of losses and capital-relevant
metrics. In this section we sketch several extensions and discuss broader implications and
limitations. The aim is not to exhaust the design space, but to show how the NatPar
perspective can be carried into more realistic, multi-peril and multi-index portfolios and
how it relates to current debates on solvency and climate-risk management.

8.1 Multi-trigger and multi-peril NatPar programmes

Real-world parametric programmes are rarely as simple as the single-index frost design con-
sidered above. They often involve multiple indices, multiple perils and layered structures
across regions and client types. The NatPar framework accommodates these extensions,
but also clarifies where complexity may undermine transparency and acceptance.

Multi-trigger within a peril. Within a single peril (e.g. tropical cyclone) it is natural
to consider multi-trigger structures that use several aspects of the hazard, such as maximum
wind speed and storm surge, or rainfall accumulation and wind. In NatPar notation this
corresponds to payout functions

Pe,m = Im

(
Z(1)
e , . . . , Z(J)

e

)
,

with J > 1 indices per event. The hazard module already simulates the relevant fields,
so constructing such indices is straightforward. The exposure and vulnerability blocks can
then be used to assess whether adding indices meaningfully reduces basis risk or merely
increases contractual complexity.

From a NatPar standpoint, multi-trigger designs are attractive when they capture qual-
itatively different damage channels that are difficult to encode in a single index (e.g. wind
vs water vs rain-induced flooding), and when each index is itself contractible and robust.
They become problematic when the resulting payout surface is opaque to clients and reg-
ulators or when small changes in parameterisation produce large, unintuitive changes in
payouts.

Multi-peril portfolios. Insurers and reinsurers typically manage portfolios exposed to
multiple perils across multiple regions. In a NatCat setting, this is handled by combining
event sets and applying the same hazard–exposure–vulnerability–finance machinery across
perils. NatPar generalises this by defining indices and parametric programmes for each
peril and region, then aggregating the resulting parametric payouts.
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If P indexes perils (e.g. wind, flood, drought, wildfire) and R indexes regions, a general
NatPar portfolio can be written as

SPar =
∑
p∈P

∑
r∈R

SPar
p,r ,

with each component SPar
p,r defined previously. The same event-level hazard simulations that

drive the NatCat model are used to simulate indices and payouts across perils, allowing
for consistent portfolio-level AAL and EP analysis.

Complexity vs transparency. The temptation in multi-trigger, multi-peril settings
is to exploit the full flexibility of the I(X) paradigm and to let parametric payouts be
very complex functions of many indices. NatPar provides a counterweight: because the
same NatCat models can be used to estimate the incremental reduction in basis risk from
each added index or trigger, one can explicitly compare the benefit in terms of basis-risk
metrics with the cost in terms of loss of transparency, operational complexity and regulatory
acceptability. In many cases the NatPar lens suggests that a small number of well-chosen,
simple triggers dominates more elaborate multi-trigger designs.

8.2 NatPar and solvency/climate-risk regulation

Solvency and climate-risk regulation increasingly require insurers and banks to demonstrate
resilience under severe but plausible climate scenarios. NatCat models are already central
to such exercises, providing loss distributions and stress-test results. NatPar programmes
interact with this landscape in several ways.

Capital and risk measures. Regulatory capital regimes typically impose risk measures
such as VaR or TVaR at high confidence levels over one-year or longer horizons. As shown
in the frost example, NatPar portfolios often have shorter tails and lower TVaR for a given
AAL compared with their indemnity counterparts, due to bounded, index-linked liabilities
and the absence of a long development tail. Under capital regimes that are sensitive to
tails rather than to AAL alone, NatPar programmes can therefore be more capital-efficient
per unit of expected loss.

From a supervisory perspective, this raises both opportunities and questions: para-
metric structures may allow insurers to maintain or expand coverage in climate-exposed
lines while respecting capital requirements, but they also introduce basis risk that must be
understood and, in some cases, explicitly reported or capitalised.

Climate stress testing and scenario analysis. Climate-risk stress testing typically
involves altering the hazard module (e.g. increasing the frequency or severity of certain
perils, changing spatial patterns) and re-running the NatCat model. In a NatPar setting,
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the same altered hazards will feed directly into index distributions and hence parametric
payouts. Because NatPar portfolios are more tightly linked to hazard and less to exposure,
they can provide sharper insight into how balance sheets respond to physical climate shifts
under different adaptation and exposure scenarios.

Banks and public entities that use parametric structures (e.g. sovereign disaster risk-
financing facilities, contingent credit lines with parametric triggers) can also incorporate
NatPar portfolios into their own stress tests, using the NatCat/NatPar machinery to sim-
ulate joint behaviour of losses, payouts and macro-financial variables.

Regulatory views on parametric products. Supervisors and standard-setters have
shown growing interest in parametric products, but also concern about their complexity
and about consumer protection in the presence of basis risk. The NatPar framework
offers a way to present parametric programmes in a language familiar to regulators: as
variants of existing NatCat models with clear, quantifiable basis-risk profiles, rather than as
opaque new instruments. It also suggests that regulatory guidance may wish to distinguish
between simple, hazard-linked NatPar structures with well-understood basis risk and highly
complex, multi-trigger designs that may be difficult to communicate or supervise.

8.3 Limitations and practical challenges

While the NatPar framework offers a coherent way of thinking about parametric insurance
from a supply-side perspective, it has important limitations and faces practical challenges.

Data and model limitations. NatPar relies on the same underlying hazard, exposure
and vulnerability models as NatCat. If these models are poor, biased or unstable, the
resulting basis risk analysis and parametric designs will also be unreliable. In some markets
hazard data are sparse, exposure data are incomplete, and loss histories are short; in others,
non-stationarity is so pronounced that historical patterns may be a poor guide to future
risks. NatPar does not remove these problems; it re-allocates them.

Governance of indices and triggers. Parametric payouts are only as good as the
indices they rely on. This raises questions of governance: who controls the index, how
revisions or errors are handled, how disputes are resolved, and what happens when mea-
surement systems change (for example, replacement of weather stations or satellite prod-
ucts). Robust contractual and institutional arrangements are needed to ensure that indices
remain trustworthy over the lifetime of a NatPar programme.

Market acceptance and client understanding. Even simple parametric structures
can be unfamiliar to policyholders and intermediaries used to indemnity insurance. Basis
risk, in particular, can be difficult to explain: clients may perceive a contract as unfair if it
fails to pay in a year when they experience losses, even if the overall design is actuarially
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sound and transparently documented. Education, clear documentation and careful choice
of trigger structures are therefore essential for market acceptance.

Operational and legal considerations. Implementing NatPar programmes at scale
requires robust operational processes: index calculation and verification, payout automa-
tion, integration with underwriting and claims systems, and coordination with reinsurance
and capital market transactions. Legal frameworks for parametric products may be less
well-developed than for traditional insurance in some jurisdictions, raising questions about
enforceability, consumer protection and the boundary between insurance and derivatives.

9 Summary and lessons from the frost laboratory

The frost examples provided a concrete illustration of the NatPar thesis. Starting from
a simple NatCat model of seasonal frost damage to citrus in two regions, we defined an
indemnity cover and constructed two NatPar alternatives whose payouts depend only on
temperature: a continuous design P = qD(T ) and a binary tail-trigger design P = q1{T<τ},
calibrated by AAL-neutrality. Because the designs share the same hazard and vulnerability
base, differences in EP curves, VaR, and loss-ratio behaviour are attributable to contract
structure rather than to inconsistent modelling inputs.

Three lessons are generic and set the standard for NatPar evaluation.

Payout shape governs tail capital. “Parametric” is not automatically “capital-light”.
Continuous bounded schedules tend to cap liabilities and dampen exposure-driven tails;
digital schedules can concentrate losses into capital-relevant quantiles. Trigger probabil-
ity and payout shape must be evaluated jointly against the chosen capital metric (e.g.
VaR0.995).

Basis risk is the operational interface between NatCat and NatPar. NatPar
replaces the exposure–vulnerability component of indemnity loss by a low-dimensional
hazard-only payout. The residual B := Y −P is therefore not a nuisance term but a mea-
surable interface. Exceedance-basis curves provide a tail view of shortfall and overpayment
that is directly suitable for governance and model validation.

A disciplined reporting template supports both practice and supervision. By
extending NatCat outputs (AAL, EP/AEP/OEP, return levels, tail metrics) to the para-
metric portfolio and pairing them with basis-risk exceedance diagnostics, NatPar pro-
grammes become comparable, auditable, and regulator-friendly. This discipline also dis-
courages gratuitous complexity: additional triggers and indices should be justified by mea-
sured basis-risk reduction net of losses in transparency and operational robustness.
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In summary, Natural Parametric Insurance is not a departure from NatCat practice
but a reorganisation of it in response to climate-driven uninsurability, exposure uncertainty,
and capital pressure. Making this reorganisation explicit provides a common language for
theorists, practitioners, and supervisors to design, analyse, and govern parametric pro-
grammes in a way that is both mathematically coherent and operationally grounded in
how catastrophe risk is actually managed.

Appendix

Proof of the equation (12).

Fix x ≥ 0 and condition on D.

• Case 1: no-loss-under-deductible (AD ≤ l). Then Y = 0 and P − Y = qD′. Over-
payment exceedance is

qD′ > x,

which depends only on hazard.

• Case 2: above deductible (AD > l). Then Y = AD − l and

P − Y = qD′ − (AD − l)+ = l + qD′ −AD.

The inequality P − Y > x becomes

l + qD′ −AD > x⇐⇒ A <
l − x+ qD′

D
,

together with the constraint A > l/D (to ensure we are in Case 2).

Combining the two cases yields the conditional CDF form
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BEPc,−(x) = P (P − Y > x) = E
[
1{P−Y >x}1{D>0}

]
= E

[
E
(
1{P−Y >x}|D

)
1{D>0}

]
= E

[
E
(
1{P−Y >x}1{AD≤l}|D

)
1{D>0}

]
+ E

[
E
(
1{P−Y >x}1{AD>l}|D

)
1{D>0}

]
= E

[
E
(
1{qD′>x}1{AD≤lr}|D

)
1{D>0}

]
+ E

[
E
(
1{

A< l−x+qD′
D

}1{AD>l}|D
)
1{D>0}

]
= E

[
1{qD′>x}1{AD≤l}1{D>0}

]
+ E

[
1{

A< l−x+qD′
D

}1{AD>l}1{qD′>x}1{D>0}

]
= E

[
1{qrD′>x}1{Ar,t≤ lr

D}1{D>0}

]
+ E

[
1{

l
D
<A< l+qD′−x

D

}1{qD′>x}1{D>0}

]
= E

[
FA

(
l

D

)
1{D>0,qrD′>x}

]
+ E

[(
FA

(
l + qD′ − x

D

)
− FA

(
l

D

))
1{D>0,qD′>x}

]
= E

[
FA

(
l + qD′ − x

D

)
1{qD′>x}

]
= E

[
FA

(
l + q (D − d)+ − x

D

)
1{(D−d)+>x/q}

]
= E

[
FA

(
l + qD − qd− x

D

)
1{D>x/q+d}

]
= E

[
FA

(
l − qd− x

D
+ q

)
1{D>x/q+d}

]
.
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Proof of equation (13).

BEPb,+(x) = P (Y > x,D ≤ d) + P (Y > x+ q, D > d)

= P(AD > x+ l, D ≤ d) + P(AD > x+ q + l, D > d)

= E
(
FA

(
x+ l

D

)
1{D≤d}

)
+ E

(
FA

(
x+ q + l

D

)
1{D>d}

)
Proof of equation (14).

BEPb,−(x) = P (−B > x) = P(q > x,D > d, Y = 0)

+ P (q − Y > x,D > d, Y > 0)

= P
(
q > x,D > d,A ≤ l

D

)
+ P

(
q > x,

q + l − x

D
> A >

l

D
,D > d

)
= P

(
q > x,D > d,

qr + lr − x

D
> A

)
=

{
E
(
FA

(
q+l−x

D

)
1{D>d}

)
, x < q

0, x ≥ q
.
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